

GPM-8320/8330

数字功率计

特点

- 5" TFT LCD
- 电压/电流表测试频率带宽: DC, 0.1Hz~100kHz
- 波形显示: V (电压)、I (电流)、P (功率)
- 畸变波电流/电压测量: Full Range for CF=3, Half Range for CF=6 (或6A)
- 谐波测量符合IEC 61000-4-7要求(50/60Hz)
- 接线选择按钮(1P3W、3P3W、3P4W、3V3A)
- 50阶谐波测量&分析
- 积分功能支持自动换挡
- 通过USB Host进行屏幕捕获
- 提供外部电流传感器输入(EXT1/EXT2)
- 标配接口: RS-232C, USB Device/Host, LAN
- 选配接口: GPM-DA12-GPIB+数字I/O(仅限工厂安装)

B. 多种显示模式

The man was a second of the man o

VTMSE 219.95 V ITMSE 2.2064 A PE 1.4559 KW VAE 1.4559 RVA

Numerical (Single) Mode

ingle) Numerical (Multiple) Mode

Numerical (Simple) ModeMode

Waveform Mode

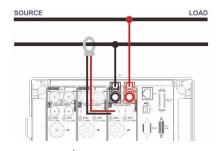
Harmonics (Bar Graph) Measurement

Harmonics (List) Measurement

GPM-8320/8330 提供两种显示模式,数值和图形,帮助用户最大限度地提高测量的效益。数值模式中,有两个选项: single 和 multiple。single 模式中,有四个选项卡可以根据模块的测量设置进行自定义,每个选项卡最多可以显示 10 个测量参数(2 个主要测量和 8 个辅助测量)。在 multiple 模式中,还有四个选项卡,用户可以同时观察来自三个不同模块的相同 8 个测量参数。两种模式下的参数都可以根据需要进行排列和自定义,而且无论选择哪个选项卡,都可以使用仅显示前四个参数的简单模式。图形模式下,有一个简单的示波器功能,可以显示三个参数的波形:电压、电流和功率。可以调整水平刻度(根据设置的数据更新率,从 50us/div 到 10ms/div),并提供三种波形观察放大率。测量谐波时,可以将每个阶次的谐波测量结果显示在条形图中,并可以指定特定的观测阶次。此外,各阶的谐波的所有相关值(电压/电流/电压失真百分比/电流失真百分比/功率失真百分比/电压相位角/电流相位角)都可以被完全记录和呈现。

C. 丰富的测量参数

Measurement Items	Symbols
Voltage	Vrms, V+pk, V-pk, Vac*, Vdc*, Vmn*
Current	Irms, I+pk, I-pk, Iac*, Idc*
Power	P, P+pk, P-pk, VA, VAR
Power Factor	PF
Crest Factor	CFV, CFI
Phase Angle	DEG
Frequency	VHz, IHz
Total Harmonic Distortion	THDV, THDI
Mathematical Computation	MATH
Maximum Current Ratio	MCR
Integration	WP, WP+, WP-, q, q+, q-, Vac, Iac


^{*:} Only applicable to specific measurement modes and available for selection

GPM-8320/8330 提供了多种测量项目,包括电压、电流、频率、有功功率、视在功率、无功功率、功率因数、峰值因数、总谐波失真,甚至可以测量最大电流比。此外,GPM-8320/8330 还搭配了针对待测物进行功率或电流时间积分测量的功能。用户设置一段时间,在这段时间内进行瞬时功率积分,再除以时间,就可以得到 DUT 的平均功率。此外,在积分测量过程中,GPM-8320/8330 支持自动挡位切换功能,以响应 DUT 在不同时间段内的功率变化,获得最完整的积分结果。

D. 绝佳的测量辅助

Ratio Configuration

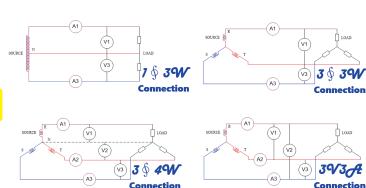
External Current Sensor Input

在测量支持方面,GPM-8320/8330 的表现也是相当出色的。首先,在大电压 / 大功率的测量中,他们提供电压比 / 功率比的设置,以将衰减率恢复到真实值。此外,对于大电流测量,除了电流比设置之外,还有用于外部电流传感器的端子(EXT1/EXT2),可以连接到电压输出型电流互感器,使得大电流测量更加方便。此外,GPM-8320/8330 提供了 4 组面板设置用于存储 / 调用,以及一个可存储多达 10000 个测量值的存储器。测量存储器可以根据更新率或用户定义的时间间隔记录测量结果,以供后续分析。前面板上的 USB host 支持屏幕捕获、测量值存储和固件更新。

固纬电子的 GPM-8320/8330 是专门为测量三相交流电源中的功率而设计的数字功率计,适用于大多数电气和电子产品测试应用(GPM-8320 提供 2 个模块,GPM-8330 提供 3 个模块)。该产品测试带宽可达 DC,0.1Hz~100kHz,采用 16 位 A/D、采样率 300kHz。还提供 5" TFT LCD 显示屏、5 位数测量显示、25 种不同的功率测量参数,有着高精度测量能力。GPM-8320/8330 还具有波形显示功能(电压 / 电流 / 功率)、积分测量功能、各阶谐波测量和分析(50/60Hz 测量符合IEC61000-4-7 要求)、外部感应器输入端子和各种通信接口。这些功能帮助用户实现清晰、便捷、准确的功率测量,使其成为同类产品中功能齐全、性价比高的功率表。

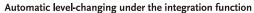
GPM-8320/8330 提供多种输入电压配置接线模式 (1P3W/3P3W/3P4W/3V3A). 用户可以根据自己的具体要求选择接线方式,测量特定接线方式的参数, 甚至计算效率。此外, 1000V 的额定输入电压和 20A 的输入电流, 可支持最小电流挡位至 0.5A (分辨率可达 0.1mA), 功率测量分辨率 0.1mW, 波峰因素可达 3 (半量程 CF 可达 6 或 6A), 且电压 / 电流 / 功率测量能力可达±(0.1% 读值+0.05% 挡位)。用户可以选择不同的测量模式(AC+DC/AC/DC/V-MEAN), 为功率测量提供多达 25 个相关参数。这些参数包括电压(Vrms/Vac/Vdc/Vmn/V+pk/V-pk)、电流(Irms/Iac/Idc/I+pk/I-pk)、频率(VHz/IHz)、功率(P/P+pk/P-pk),波峰因数(CFV/CFI)、视在功率(VA)、无功功率(VAR)、功率因数(PF)、相位角(DEG)、总谐波失真(THDV/THDI)、最大电流比(MCR)和 MATH 计算功能。

GPM-8320/8330 还有效地利用了 TFT LCD 显示器的优势,以数值和图形的方式提供参数测量结果。在数值方面,它提供了一般模式和多种模式。一般模式包括 4 个选项卡(page1~page4),每个选项卡可显示 10 个测量参数(2 个主要测量 +8 个监测测量)。用户可以自由组合这些参数,以显示来自各个模块的测量结果。多种模式可以同时显示三个模块的测量结果,特别适合比较模块之间的测量差异,例如三相不平衡。该模式还提供了 4 个选项卡,每个选项卡可以显示 8 个测量参数。在图形显示方面,他们提供了一种简单的示波器模式,以波形格式显示电压、电流和功率参数。此外,该显示器提供了数值或条形图显示,用于测量和分析各阶谐波信号,不仅满足了制程测试中对准确性和清晰可读性的需求,还满足了研发、设计和质量验证上多样性的测量应用要求。


GPM-8320/8330 在辅助量测的机制 / 功能上的表现,也是全方位的。对于需要测量大电压的应用,它们提供可与外部电压互感器一起使用的 VT 速率设置。而针对大电流的测量,则取决于电流互感器的类型,是电压输出型还是电流输出型。如果它是电流输出型,可以直接锁定在仪表的后面板上,并与 CT 速率设置一起用于测量。如果是电压输出型,则可以通过 GPM-8320/8330 提供的外部电流传感器输入端子(EXT1/EXT2)进行测量。自动换挡可自定义需要的换挡挡位,以节省不必要的换挡时间。10000 笔内部存储器可以按照 GPM-8320/8330 设置的更新速率或用户定义的时间间隔存储测量数据,以供后续分析。

在数据采集和存储方面,GPM-8320/8330 提供了各种通信接口,包括 RS-232C/USB device (虚拟 COM)/LAN 或选配的 GPIB。用户可以根据自己的习惯或与现有的系统接口搭配,选择编写读取测量结果的程序。USB host 可以支持 GPM-8320/8330 的屏幕捕获、内部数据记录和固件更新。对于那些需要使用外部信号控制或数据记录器进行数据记录的人,GPM-8320/8330 还提供了一个选配的数字 I/O (DA12)接口(必须在出厂前安装),该接口可以连接到 PLC 或数据记录器等外部控制器,以满足自动测量或长时间记录应用的需求。

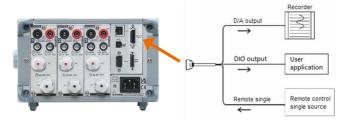
A. 接线选择键


GPM-8320/8330 提供多种输入电压配置接线模式 (1P3W/3P3W/3P4W/3V3A)。用户可以根据自己的 具体要求选择接线方式,测量具体接线方式的参数,甚至计算效率。

规 格				
输入				
项目	规格			
输入类型			382寸中四人[
	电压/电流 通过电阻分压器浮动输入;通过分流器浮动输入			
测量挡位	电压			
		直接棚八 传感器輸入		5 V, 10 V; EXT 2: 50 mV, 100 mV, 200 mV, 500 mV, 1 V , 2 V
输入阻抗	电压	14 324 11 1117 1	EXT 1. 2.3 ¥,	输入电阻·接近2 M Ω
柳八阳机	电流	直接输λ范围	0.5A ~ 20A	制入电阻: 接近2 M Ω 输入电阻: 接近5 m Ω
			~ 10V (EXT 1)	输入电阻: 接近100 kΩ
	14 /6/ 111 /11/7 (1V ~ 2V (EXT 2)	输入电阻: 接近20 kΩ
连续最大允许输入	电压		,	
连 续取入兀 计 制入	电压 电流	直接输入范围	1054 204	峰值1.5kV或均方根值1kV,取较小值 峰值为100A或均方根值为30A,取较小值
	电弧	直接棚八池园 传感器输入	0.5A ~ 20A	峰值小于或等于额定范围的5倍
				単直小 以守 秋たル回印
输入带宽	DC, 0.1 Hz ~			
连续最大共模电压	600 Vrms, CA	ΑΤ 		
Line filter	选择 OFF 或	ON (截止频率5	500 Hz)	
频率滤波器	选择OFF或	ON (截止频率5	500 Hz)	
A/D 转换器	同时转换由户	、 玉和由流输入・・	, 分辨率16位·最大:	专换率约为300kHz
显示更新间隔				示更新间隔为200ms。
业小文利问照				显示设置为矩阵或所有项目时,显示更新间隔为500 ms。
		新间隔大约为1。	, , , ,	亚小灰直为是件次/// 自灭自制, 亚小文加刊品为300 11136
		川門圏入约列に	00	
电压和电流精度	4m.16			
项目	规格		-0-	
要求	温度		23 ± 5℃	
	湿度		30~75% RH	
	输入波形		正弦波峰值因子=	3
	共模电压		0 V	
	显示位数		5位	
	频率滤波器		打开以测量200 ⊢	z或以下的电压或电流
	预热30分钟月	后; 测量范围改	变后 (零电平补偿	; 更新间隔为250 ms
精度	DC		•	
相反			± (0.1% 读值 + 0.	•
	0.1 Hz ≤ f <		± (0.1% 读值+ 0.	,
	45 Hz ≤ f ≤		± (0.1% 读值+ 0.	,
	66 Hz < f ≤		± (0.1% 读值+ 0.	,
	1 kHz < f ≤		± (0.07 *f) %读值	
	10 kHz < f ≤			%挡位) ± [{0.04x(f-10)}% 读值]
	超过750V的	电压值,其中3	0kHz <f<100khzſ∑</f<100khz	为参考值。
温度系数	Add		±0.03% 读值/°C在	5至18℃或28至40℃范围内
当line filter开启时	45 ~ 66 Hz		Add 0.3 % 读值	
	< 45 Hz		Add 0.1 % 读值	
峰值系数设置为6或6A时的精度	当峰值因子i	殳置为3时,通 近	上将测量范围误差 :	D倍获得的精度
数据更新闻隔引起的精度变化	当数据更新问	间隔为100 msb	† 自动 将读数的	.05%增加到0.1 Hz至1 kHz的精度
零位补偿或量程变化后		当位/°C 至直流F		100700-BJAD2JOTT TIEET IN TERSTIFICE
令证例法以里性文化力		ョ位/ C 至重派・ 加到直流电流精		
	1		ī皮 /100 mA/200 mA	¼./÷
				• •
	1 ' '	4/5 A/10 A/20 A		500μA/°C
		惑器输入 (/EXT	,	1 mV/°C
	外部电流传统	感器输入 (/EXT	2)	50µV/°C
峰值系数设置为6或6A时的精度	当峰值因子i	殳置为3时,通过	[本] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	n倍获得的精度
数据更新间隔引起的精度变化				.05%增加到0.1 Hz至1 kHz的精度

田山田田本本年	T			
电压和电流精度	+0 +0	+ <i>to to to to to</i>		
项目	规格			
	与电压和电流		_	
项目 要求	与电压和电源 功率因数		1	
项目	与电压和电流		(0.1 % 读值 + 0.2	· · · · · · · · · · · · · · · · · · ·
项目 要求	与电压和电源 功率因数			•
项目 要求	与电压和电流 功率因数 DC	45 Hz	(0.1 % 读值 + 0.2	% 挡位)
项目 要求	与电压和电流 功率因数 DC 0.1Hz ≤ f < 4	45 Hz : 66 Hz	(0.1 % 读值 + 0.2 ± (0.3 %读值+ 0.2	% 挡位) 5 %挡位)
项目 要求	与电压和电流 功率因数 DC 0.1Hz ≤ f < 4 45 Hz ≤ f ≤	45 Hz : 66 Hz 1kHz	(0.1 % 读值 + 0.2 ± (0.3 %读值+ 0.3 ± (0.1 %读值+ 0.4 ± (0.2 %读值+ 0.4	% 挡位) 5 %挡位) %挡位)
项目 要求	与电压和电流 功率因数 DC 0.1Hz ≤ f < 4 45 Hz ≤ f ≤ 66 Hz < f ≤ 1 1 kHz < f ≤ 6	45 Hz : 66 Hz 1kHz 10 kHz	(0.1 % 读值 + 0.2 ± (0.3 %读值+ 0.2 ± (0.1 %读值+ 0.2 ± (0.2 %读值+ 0.2 ± (0.1 %读值+ 0.3	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值]
要求	与电压和电流 功率因数 DC 0.1Hz ≤ f < 45 Hz < f ≤ 66 Hz < f ≤ 7 1 kHz < f ≤ 7	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz	(0.1 % 读值 + 0.2 ± (0.3 %读值+ 0.2 ± (0.1 %读值+ 0.4 ± (0.2 %读值+ 0.2 ± (0.1 %读值+ 0.3 ± (0.5 %读值+ 0.3	% 挡位) 5 %挡位) %挡位)
项目 要求	与电压和电流 功率因数 DC 0.1Hz ≤ f < 4 45 Hz < f ≤ 66 Hz < f ≤ 1 1 kHz < f ≤ 1 10 kHz < f ≤ 3 3 功率因数	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz (λ) = 0 (S: 视名	(0.1% 读值 + 0.2 ± (0.3%读值+ 0.3 ± (0.1%读值+ 0.4 ± (0.2%读值+ 0.3 ± (0.1%读值+ 0.3 ± (0.5%读值+ 0.3 E功率)	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值]
项目 要求 精度	与电压和电流 功率因数 DC 0.1Hz ≤ f < 6 45 Hz < f ≤ 66 Hz < f ≤ 1 kHz < f ≤ 10 kHz < f ≤ 3 当功率因数 ± 0.1 % of S f	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz (λ) = 0 (S: 视右 for 45 Hz ≤ f ≤	(0.1% 读值 + 0.2 ± (0.3%读值+ 0.3 ± (0.1%读值+ 0.4 ± (0.2%读值+ 0.3 ± (0.1%读值+ 0.3 ± (0.5%读值+ 0.3 E功率) ≤ 66 Hz	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值] %挡位) ± [{0.09x(f-10)}% 读值]
项目 要求 精度	与电压和电流 功率因数 DC 0.1Hz ≤ f <	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz (λ) = 0 (S: 视右 for 45 Hz ≤ f ≤ 5 × f) % of S } ヌ	(0.1% 读值 + 0.2 ± (0.3%读值+ 0.3 ± (0.1%读值+ 0.4 ± (0.2%读值+ 0.3 ± (0.1%读值+ 0.3 ± (0.5%读值+ 0.3 E功率) ≤ 66 Hz 寸于高达100 kHz的	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值] %挡位) ± [{0.09x(f-10)}% 读值]
项目 要求 精度	与电压和电流 功率因数 DC 0.1Hz ≤ f << 45 Hz ≤ f ≤ 66 Hz < f ≤ 1 kHz < f ≤ 10 kHz < f ≤ 当功率因数 ± 0.1 % of 5 f + {(0.1 + 0.15 • f是输入信号	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz (λ) = 0 (S: 视右 for 45 Hz ≤ f ≤ 5 × f) % of S } ヌ 号的频率,单位分	(0.1% 读值 + 0.2 ± (0.3%读值+ 0.3 ± (0.1%读值+ 0.4 ± (0.2%读值+ 0.3 ± (0.1%读值+ 0.3 ± (0.5%读值+ 0.3 E功率) ≤ 66 Hz 寸于高达100 kHz的 5 kHz	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值] %挡位) ± [{0.09x(f-10)}% 读值]
项目 要求 精度	与电压和电流 功率因数 DC 0.1Hz ≤ f << 45 Hz < f ≤ 66 Hz < f ≤ 1 kHz < f ≤ 10 kHz < f ≤ ± 0.1 % of S f ± {(0.1 + 0.15 •f是输入信号 when 0 < λ	45 Hz : 66 Hz 1kHz 10 kHz : 100 kHz (λ) = 0 (S: 视右 for 45 Hz ≤ f ≤ 5 × f) % of S } ヌ 号的频率,单位为	(0.1% 读值 + 0.2 ± (0.3%读值 + 0.3 ± (0.1%读值 + 0.4 ± (0.2%读值 + 0.4 ± (0.5%读值 + 0.4 ± (0.5%读值 + 0.4 E	% 挡位) 5 %挡位) %挡位) %挡位) ± [{0.067x(f-1)}% 读值] %挡位) ± [{0.09x(f-10)}% 读值]

E. 弹性的切换挡位机制


Self-defined automatic level-changing mechanism

GPM-8320/8330 为提供在自动挡位切换模式下,进行积分功能的测量,让用户完整计算自积分功能开始到结束期间的 DUT 功率变化的总值。此外,GPM-8320/8330 还支持自定义的挡位切换机制。用户可以自行选取需要的切换挡位,这不仅节省了挡位切换过程中浪费的时间,同时也可加速测试的进行。

F. 方便实用的接口

Practical Interface

Da12 Interface Mechanism

GPM-8320/8330 提供了一应俱全、多样实用的通信接口,包括 RS-232/USB/LAN/GPIB(选配),适用于让用户通过命令集对计算机软件进行编程来远程控制和收集测量结果。选配的数字 I/O(DA12)接口根据用户设置提供三种不同的模式:包括外部控制、DA12 输出和自定义输出。当设置为外部控制模式时,用户可以通过外部信号激活、停止、触发或重置积分测量功能。当设置为 DA12 输出模式时,用户可以从提供的 17 个测量参数(甚至是积分测量的结果)中定义 12 个测量参数值,以固定挡位(满刻度 +5V)或手动挡位(满刻度 +5V)输出,并搭配数据记录器配套接收结果。当被设置为自定义输出模式时,需要与通信接口一起使用,并且通过指令的方式控制每个定义引脚的动作。

面板介绍

) 71 W ml) 27 15 4 -1 17 16			1.000	
测量挡位	六种类型之间的自动切换: 100mHz, 1 Hz, 10 Hz, 100 Hz, 1 kHz, 10 kHz, and 100 kHz.				
频率滤波器	选择关或开(截止频率为500Hz)				
精度	要求	(如果波峰系数设置	则量挡位的30%或更高 置为6或6A, 则为60%或 以下的电压或电流时, 奶		
积分测量	(, , , , , , , , , , , , , , , , , , ,				
项目	规格				
模式	选择手动集成模式、标准	生成模式或重复生成模	,		
计时器	通过设置计时器自动停止				
	可选范围: 0小时00分00秒至9999小时59分59秒				
精度	±(功率精度(或电流精度) + 0.1% 读值) (固定挡位)				
挡位设置	自动挡位或固定挡位可用	于集成			
计时器精度	±0.02%				
远程控制	可使用外部远程信号进行	可使用外部远程信号进行启动、停止和复位操作。(选配)			
谐波测量					
项目	规格				
测量项目	电压、电流、功率				
测量方法	零交叉同时计算法				
频率范围	10 Hz ~ 1.2 kHz.				
FFT 数据长度	4096(50Hz/60Hz和更新率	区必须大于等于0.5s时自	动切换)		
采样率、窗口宽度、分析指令上限*	基频 45 Hz~55 Hz 54 Hz ~ 66 Hz	采样率 f x 512 f x 512	窗口宽度 10 12	分析指令上限 50 50	
FFT 数据长度	1024			A lette A I m	
采样率、窗口宽度、分析指令上限*	基频 10 Hz ~ 67 Hz 67 Hz ~ 150 Hz 150 Hz ~ 300 Hz 300 Hz ~ 600 Hz 600 Hz ~ 1200 Hz	采样率 f×1024 f×512 f×256 f×128 f×64	窗口宽度 1 2 4 8 16	分析指令上限 50 32 16 8 4	
精度	频率 10 Hz ≤ f < 45 Hz 45 Hz ≤ f < 440 Hz	电压 0.15% 读值 + 0.35%挡位 0.15%读值 + 0.35%挡位	电流 0.15%读值 + 0.35%挡位 0.15%读值 + 0.35%挡位	功率 0.35%读值 + 0.50%挡位 0.25%读值 + 0.50%挡位	
* 50Hz/60Hz 符合 IEC61000-4-7 (更新率必	440 Hz ≤ f < 1.2kHz	0.20%读值 + 0.35%挡位	0.20%读值 + 0.35%挡位	0.40%读值 + 0.50%挡位	

- * 50Hz/60Hz 符合 IEC61000-4-7 (更新率必须大于 0.5s)
- *谐波计算: FFT方法, 其中FFT数据长度分为1024和4096两种类型。
- * FFT数据长度根据测量信号的频率和更新率自动切换。

项目	规格
输出电压	每个通道标准值 ±5 V FS (最大值约±7.5 V)
输出通道数	12
输出项目	每个通道可设置: V, I, P, VA, VAR, PF, DEG, VHZ, IHZ, Vpk, Ipk, WP, WP±, q, q±, Off
精度	±(每个测量参数的准确度+0.2% of FS)(FS = 5 V)
D/A 转换分辨率	16 bits
最小负载	100 kΩ
更新间隔	与数据更新间隔相同。在自动更新速率的情况下, 更新间隔等于信号间隔。超过100毫秒。

温度系数 远程控制输入/输出信号(选配)

D/A 输出 (选配)

是生工的相外/相由自匀(2016)		
项目	规格	
远程控制输入信号	EXT HOLD, EXT TRIG, EXT START, EXT STOP, EXT RESET	
远程控制输出信号	INTEG BUSY	
I/O level	ΠL	
I/O 逻辑格式	Negative logic, Falling edge	
1		

- * Q (VAR)、S (VA)、 λ (PF) 和 Φ (DEG)来源于经过计算的电压、电流和有功功率等测量值。因此, 对于失真的信号输入, 从采用不同方法的其他仪器获取的值可能与从GPM-8320/8330获取的值不同。
- * 当电流或电压小于额定范围的 0.5% 时(当峰值系数设置为6时, 小于或等于1%), S 或 Q 将显示"零", λ 和 ϕ 将显示"--"。

通用

以下是在规范范围内操作GPM-8320/8330所需的基本条件:

・1年校准: 毎年

±0.05%/°C of FS

- ・操作环境: 18-28℃(64.4~82.4 『)
- ・湿度: <80%RH, ・精度: 土(%读值+%挡位)
- 该规格适用于至少预热30分钟并慢速运行。
- 电源电缆必须接地以确保准确性。
- 输入电压和电流必须是标准正弦波。
- •功率因数必须为1。
- •波峰系数必须为3。
- 共模电压必须为零。

规 格					
当line filter 开启时	45 ~ 66 Hz	Add 0.3 % 读值			
	< 45 Hz	< 45 Hz Add 1 % 读值			
温度系数	与电压和电流的	与电压和电流的温度系数相同			
峰值系数设置为6或6A时的精度		当峰值因子设置为3时,通过将测量范围误差加倍获得的精度			
视在功率精度 S	电压精度 + 电流	电压精度 + 电流精度			
无功功率精度 Q	视在功率精度+	视在功率精度+ (√1.0004 - λ 2) - (√1 - λ 2) ×100 %			
功率因数精度 入		c)+	5/100时功率因数的影响)}]±1 位	
相位差精度 Φ		$\pm [\mid a \cdot \cos^{-1}(\lambda \mid 1.0002) \mid + \sin^{-1}(\lambda \mid 0.0002) \mid + \sin^{-1}(\lambda \mid 0.002) \mid + \sin^{-1}(\lambda \mid 0.002) \mid + \sin^{-1}(\lambda \mid 0.002) \mid + \sin^{-1}(\lambda \mid 0.$			
峰值系数设置为6或6A时的精度	当峰值因子设置	当峰值因子设置为3时,通过将测量范围误差加倍获得的精度			
数据更新间隔引起的精度变化		当数据更新间隔为100 ms时,且为自动时,将读数的0.05%增加到0.1Hz至1kHz的精度			
电压、电流和有功功率测量					
项目	规格				
测量方法	数字采样法				
波峰系数	3 or 6 (6A)				
接线系统	单相, 双线 (1 P2	, W)			
当位选择	选择手动或自动	•			
自动挡位		, 当满足以下任一条件时,挡位会	增大 。		
	Crest factor 3 Crest factor 6 Crest factor 6A	Vrms 或 Irms超过当前设 输入信号的Vpk、Ipk值i Vrms或Irms超过当前设 输入信号的Vpk、Ipk值i Vrms或Irms超过当前设	B定测量挡位的130% 超过当前设置测量挡位的3 定测量挡位的130% 超过当前设置测量挡位的6	00%。	
	自动挡位下降:	当满足以下所有条件时,挡位下'	隆。		
	Crest factor 3	自动挡位下降: 当满足以下所有条件时,挡位下降。 Crest factor 3 Vrms或Irms小于等于测量挡位的30%。 Vrms或Irms小于等于下一个较低测量挡位的125%。			
	Crest factor 6 or	6A Vrms或Irms小于等于测 Vrms或Irms小于等于下	超过当前设置测量挡位的36 量挡位的30%。 一个较低测量挡位的125% 超过当前设置测量挡位的6	0	
显示模式切换					
测量同步源	选择电压, 电流	或关闭, 在自动更新率的情况下	, 从配备的元件中选择电压	E或电流。	
Line filter		上频率为500 Hz)		- 1, -1,1	
峰值测量	,		。 日本、自流或功率的峰值	(最大值、最小值)。	
零电平补偿]内部偏移(测量挡位更改后)		(40)(E(40)E)	
测量参数	电压	Vrms , Vmn, Vdc , Vac	频率	IHz and VHz	
	电流 有功功率 视在功率 无功功率	Irms , Idc , Iac P VA VAR	电压峰值 电流峰值 有功功率峰值 总谐波失真	V+pk and V-pk I+pk and I-pk P+pk and P-pk THDI and THDV	
	功率因数	PF	数学计算	MATH	
	波峰系数 相角	CFI, CFV DEG	最大电流比	MCR	
 	TRAH	DEG			
频率测量	±111±40				
项目	规格				
测量项目	电压和电流				
测量频率挡位	数据更新间隔 0.1 s 0.25 s	测量频率范围 20 Hz < f < 100 kHz 10 Hz < f < 100 kHz			
	0.5 s 1 s 2 s 5 s 10 s 20 s Auto (*) (*)通过超时设 超时 1 s 5 s 10 s 20 s	$5 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $2.0 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $1.0 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.5 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.2 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.1 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.1 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.1 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ $0.1 \text{ Hz} \leqslant f \leqslant 100 \text{ kHz}$ 置限制测量下限频率下限频率 $0.1 \text{ Hz} \leqslant 0.5 \text{ Hz} $			

规 格			
规格条件	温度: 23℃±5℃; 湿度: <80%RH(无凝结)		
工作条件	温度0℃~40℃ • 30~40℃, 相对湿度<70%RH(无凝结) • >40℃, 相对湿度<50%RH(无凝结)		
	Indoor use only Altitude: < 2000 meters Pollution degree 2		
存储条件	温度-40℃~70℃; 湿度: <90%RH(无凝结)		
电源	交流100-240V, 50-60Hz; 消耗最大35VA		
尺寸	$220(W) \times 132(H) \times 402.5(D)mm(w/t bumpers)$		
重量	约3.85kg		

技术规格变动恕不另行通知 PM-83208330CD1BH

订购信息

GPM-8320 数字功率计(RS-232C/USB device &Host/LAN)

GPM-8320 数字功率计(RS-232C/USB device & Host/LAN和选配GPIB+DA12)

GPM-8330 数字功率计(RS-232C/USB device &Host/LAN)

GPM-8330 数字功率计(RS-232C/USB device & Host/LAN和选配GPIB+DA12)

安全说明x 1, 电源线x 1, 测试线GTL-209x 2, 测试线GTL-212A x 2(for GPM-8320), 测试线GTL-209 x 3, 测试线GTL-212Ax3(for GPM-8330), CDx 1(包括完整的用户手册和USB驱动), DA12电缆GTL-214(仅适用于带有GPM-DA12的GPM-8320/8330), GPM-002端子盖

GPM-002

GTL-209

GTL-212A

GTL-214

GPM-DA12 GPIB+DA12接口(含线缆, GTL-214)

注:该选配为二合一接口,必须在工厂安装。

选配附件

GTL-209 测试线, 香蕉头测试线约1000mm GTL-212A 测试线, O-Type to Bare-wire约1000mm

GTL-214 DA4 cable, 约1000mm

GTL-232 RS-232C线, 9-针母对9-针, 计算机的零调制解调器,

约2000mm

GTL-246 USB cable, A-B type, 约1200mm

GTL-258 GPIB cable, 25-pin Micro-D Connector, 约1900mm

GRA-452 机架安装套件, 19" 3U尺寸

固纬电子实业股份有限公司

地址: 新北市土城区中兴路7-1号 电话: +886-2-2268-0389 传真: +886-2-2268-0639 免费服务电话: 0800-079-188 marketing@goodwill.com.tw

www.gwinstek.com

固纬电子(上海)有限公司

地址: 上海市宜山路889号2号楼8楼 电话: 021-64853399

传真: 021-54500789 邮编: 200233

固纬电子(苏州)有限公司

地址: 苏州市新区珠江路521号 电话: 0512-66617177 传真: 0512-66617277 邮编: 215011 免费服务电话: 800-820-7117 400-820-7117 marketing@instek.com.cn

固纬电子(苏州)有限公司深圳分公司

地址: 深圳市宝安区西乡街道共乐路西乡商会大厦1105

电话: 0755-2907-6546 传真: 0755-2907-6570

Simply Reliable

www.gwinstek.com.cn